Supplemental material for “Modeling the excess cell surface stored
in a complex morphology of bleb-like protrusions”

1 The full set of coupled model equations

By postulating the linear momentum balance and incompressibility of the material system, the
governing system of equations is (recall the description of the total free energy F' in the main text):

p(Ov+v-Vv) = —Vp+V-o,
V-v = 0,
. (1)
Oepi +V - (vey) = V- (NV(i —p2)), i=1,3.
Op+v-Vp—W-p = vD-p+A'h,
where h = _% is known as the molecular field in the liquid crystal community [3], representing a

torque generated by the Frank-Oseen elastic energy, p; = % is the chemical potential with respect
to ¢;, given by

ps = 3vV2y3se (—V2¢3 + fl(¢3)) + V12307 $33,
pe = 3vV2y2e (—V2¢2 + fl(2)) + V123070203 + 2 (%(VP)2 + L2|p|t - %\PF),
( (

po= 3v2yee (=201 + F1(61)) + 12361 363 (2)
+3\/§71b(v4¢1 — fl(91)V2P1 — V2 fo(é1) + fé(¢1)fb(¢1)) —aV-((p-Vo1)p),
h = —KV-(2Vp)+ %(—hy + halp|?)p + a1(p - V1)V,

with fs(¢) = E%qbQ(l — ¢)? and fy(¢) = E%gi)(gb -2 -1+ %Cl), , where Cj is the spontaneous
curvature functional defined in the main text and approximated from the phase field variable ¢
by (6) below. Here o is the total extra stress, Wos = 3(93va — dav) is the vorticity tensor,
D.s = %((%va + 0av3) is the rate of strain tensor, v is a geometric parameter for the nematic gel,
and )\, is a rotational relaxation time for the nematic director p. Here the total extra stress tensor
consists of three parts:

c=0"40%40°, (3)
where ¢” is the elastic stress corresponding to the motion of the nematic director p, o¢ is the viscous
stress associated to the solvent in the system, ¢ is the Ericksen stress, the stress associated to the
elastic interfacial force due to molecular convection. They are given specifically by the following:

o' = —§(ph+hp)+3(ph—hp),
o = 2D, (4)
025 = (f- Zz 1 Pitti)dap — Zz 1 (9 i) 8@¢> Oai — aﬁp )8apy,
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where 7 is the volume-averaged viscosity, 1 = 2?21 @i, with 11 the buffer viscosity, 72 the cortical
viscosity and n3 the cytosol viscosity. The divergence of the Ericksen stress yields the interfacial
forces V- o¢ = —(Vp)-h — 3% ¢.

2 How to fit the spontaneous curvature

Given the TEM (2d) micrograph, we convert the experimental image into gray scale, where each
pixel is represented by a number between 0 and 1 that represents the volume fraction of pure buffer,
denoted by ¢ (1 represents pure buffer, 0 represents cytosol and cortex). The plasma membrane is
the level set ¢ = % Then, the figure is interpolated into either 256*256 pixels, or 128128 pixels,
depending on the mesh size in the simulation. In a similar manner, for the 3D case, we use the
data generated by the seed-and-grow model. The data is stored in either a 2563 or 1283 matrix,
with each data point between 0 and 1, representing the volume fraction of pure buffer. All data
are in Cartesian coordinates.

Denote the unit outward normal vector of the plasma membrane {¢; = %} as n, which is defined
within the phase field context by

- -0 )
Vol
Then the interfacial curvature can be expressed as a function of the phase field variable ¢; via [15]
1 $1(1 — ¢1)(1 — 2¢1)
Ci=-V-nx~ Vi — : 6
==V s o (Vo . (6)

3 Table of Model Parameters

All parameters are summarized in Table 1, including references that cite the order of magnitude
for some, whereas the others are estimated.

Table 1: dimensional and dimensionless parameters

Symbol Description Nominal Unit Reference and Remarks
value

d Characteristic length scale 1x107° m [14]

to Characteristic time scale 1 s [14]

) Cell density 1.1x 102  kg/m3 (5]

n1,1M2,M3 Averaged viscosity 10.0 N.-s/mZ 103 — 1 [14] for cytosol,100

[8] for cortex

vis,t =1,2,3  Surface tension for the interface 5x 1075 N/m [10]

Y1b Bending rigidity of cell membrane 1x107% N-.m [13]

€ Thickness of the interface 5x 1077 m model parameter

A1, A3 Motility parameter 1x10-8 m3-s/kg  model parameter

Ap Time relaxation for the nematic director p 1x 102 s [4]

S0 Excess surface area ratio 3 experiment measured

As Lagrange multiplier for excess surface area constraint 2 x 10° N/ m3 model parameter

K elastic strength for cell cortex (Frank elastic constants) 10~ 1T N (16, 9]

hi, ha LandauDe Gennes nematic potential parameters 2 x 102 N/m2 model parameter

al Parallel anchoring strength 10— 11 N assume the same with K

v Nematic director tumbling parameter 1.2 rod-like flow-aligning regime

4 Numerical Schemes

We now present the semi-discrete numerical scheme as follows.



Given the initial conditions (p°, ¢9, ¢9, ¢%, v0 = 0, p® = 0), having computed (p", ¢, ¢, %,
v.p") for n > 0, we compute (p"*t, ¢t @bt @it v HL prtl) in the following sequence.

Y

1. Step 1: update p"t!:

PR v Vpt — (v — (v1)T) - p" = S (v 4 (vi)T) - p = — bR
n)2 n\2
bt = KV (RO o (b a9 (7)
n+1
B oa =0,

2. Step 2: update (¢7 ", o5 T):

UV (v = T T - ).

= U — ) + T (P 4 L(E) + sl

1y = 3v/27y5e (—V?2 o+l 4 FHD5)) 4+ 1123(dFd203)"

05 (5 (TR + B pn 1 — B pn ),

i = Ca(61 = 01) + 3vEae (<V200H 4 F1(61) + as(1663)" + 3v 2o
VG — [PV — VA1) + (61 f(0]) V- (P Vep)pt ).

dgrt! av2grtt opptt
\ % oo =0, d) lon =0, “i—l|oa =0,
(8)
3. Step 3: update QS"'H.
¢3+1 — 1 _ ’Ill+1 ¢n+1 (9)

4. Step 4: update (v, pntly:

vntl_y

p i + (V” . V) n+l _ nv ( n+1 +( n+1) ) vpn o (anvun—&-l _ hn—i—lvpn
1V - (_%(pnthrl +hn+1pn) + §(pnhn+1 hn+1 n) +C¢n+1¢n+1 n+1 n+1)

vl 50 = 0.

vn+1 _QnJrl

5t = _v(pn+l _pn)’

(11)
V-vitl =0, v"H|yq =0.

In the above, Cy and C5 are numerical stabilizing parameters [11]. The above scheme is con-
structed by combining several effective approaches in the approximation of Cahn-Hilliard equations
[11], Navier-Stokes equations [6] and phase-field models [12, 2].

The numerical scheme is further discretized in space by central finite differences, and imple-
mented on graphic processing units (GPUs) using the CUDA interface. The Nvidia CUFFT, Thrust
[7], as well as CUSP [1] have been used to solve the linearized systems. The resultant solver is
tested in both time and space to ensure it is convergent and attains first order accuracy.
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